Fabrication and in Vitro Evaluation of Nanocomposite Hydrogel Scaffolds Based on Gelatin/PCL–PEG–PCL for Cartilage Tissue Engineering
نویسندگان
چکیده
منابع مشابه
Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملdesign and fabrication of anatomical bioreactor systems containing alginate scaffolds for cartilage tissue engineering
the aim of the present study was to develop a tissue-engineering approach through alginate gel molding to mimic cartilage tissue in a three-dimensional culture system. the perfusion biomimetic bioreactor was designed to mimic natural joint. the shear stresses exerting on the bioreactor chamber were calculated by computational fluid dynamic (cfd). several alginate/bovine chondrocyte constructs w...
متن کاملaligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (pcl), poly (vinyl alcohol) (pva) and hydroxyapatite nanoparticles (nha). the morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملFabrication of Polymer Scaffolds for Tissue Engineering
A new approach to the fabrication of individual implants and scaffolds for tissue engineering—surface selective laser sintering (SSLS)—is proposed and realized. In contrast to the conventional selective laser sintering, the SSLS method makes it possible to sinter polymer microparticles and melt the near-surface layer rather than the microparticle as a whole. The effect of the laser radiation pa...
متن کاملApplication of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering
Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and resolutions. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Omega
سال: 2019
ISSN: 2470-1343,2470-1343
DOI: 10.1021/acsomega.8b02593